Search results for " 30C62"

showing 4 items of 4 documents

Weak chord-arc curves and double-dome quasisymmetric spheres

2014

Let $\Omega$ be a planar Jordan domain and $\alpha>0$. We consider double-dome-like surfaces $\Sigma(\Omega,t^{\alpha})$ over $\overline{\Omega}$ where the height of the surface over any point $x\in\overline{\Omega}$ equals $\text{dist}(x,\partial\Omega)^{\alpha}$. We identify the necessary and sufficient conditions in terms of $\Omega$ and $\alpha$ so that these surfaces are quasisymmetric to $\mathbb{S}^2$ and we show that $\Sigma(\Omega,t^{\alpha})$ is quasisymmetric to the unit sphere $\mathbb{S}^2$ if and only if it is linearly locally connected and Ahlfors $2$-regular.

Unit sphereChord (geometry)QA299.6-43330C65 30C62Mathematics::Complex VariablesApplied Mathematics010102 general mathematicsdouble-dome-like surfacesMetric Geometry (math.MG)16. Peace & justice01 natural sciencesOmegachord-arc propertyCombinatoricsMathematics - Metric GeometryFOS: Mathematicsquasisymmetric spheresAhlfors 2-regularityMathematics::Metric GeometrySPHERESGeometry and Topology0101 mathematicsahlfors 2-regularityAnalysisMathematics
researchProduct

Rigidity of quasisymmetric mappings on self-affine carpets

2016

We show that the class of quasisymmetric maps between horizontal self-affine carpets is rigid. Such maps can only exist when the dimensions of the carpets coincide, and in this case, the quasisymmetric maps are quasi-Lipschitz. We also show that horizontal self-affine carpets are minimal for the conformal Assouad dimension.

Class (set theory)Pure mathematicsMathematics::Dynamical SystemsGeneral Mathematicsquasisymmetric mapsMathematics::General TopologyPhysics::OpticsConformal mapRigidity (psychology)01 natural sciencesDimension (vector space)0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometry0101 mathematicsself-affine carpetsMathematicsta111010102 general mathematicsPhysics::Classical PhysicsMathematics - Classical Analysis and ODEs010307 mathematical physicsAffine transformation28A80 37F35 30C62 30L10
researchProduct

Bi-Sobolev extensions

2022

We give a full characterization of circle homeomorphisms which admit a homeomorphic extension to the unit disk with finite bi-Sobolev norm. As a special case, a bi-conformal variant of the famous Beurling-Ahlfors extension theorem is obtained. Furthermore we show that the existing extension techniques such as applying either the harmonic or the Beurling-Ahlfors operator work poorly in the degenerated setting. This also gives an affirmative answer to a question of Karafyllia and Ntalampekos.

Sobolev extensionskvasikonformikuvauksetMathematics - Complex VariablesPrimary 46E35 30C62. Secondary 58E20FOS: Mathematicsharmonic extensionquasiconformal mapping and mapping of finite distortionSobolev homeomorphismsComplex Variables (math.CV)Beurling-Ahlfors extension
researchProduct

Removable sets for intrinsic metric and for holomorphic functions

2019

We study the subsets of metric spaces that are negligible for the infimal length of connecting curves; such sets are called metrically removable. In particular, we show that every totally disconnected set with finite Hausdorff measure of codimension 1 is metrically removable, which answers a question raised by Hakobyan and Herron. The metrically removable sets are shown to be related to other classes of "thin" sets that appeared in the literature. They are also related to the removability problems for classes of holomorphic functions with restrictions on the derivative.

Pure mathematicsintrinsic metricsGeneral MathematicsHolomorphic function01 natural sciencesIntrinsic metricSet (abstract data type)Mathematics - Metric GeometryTotally disconnected spaceholomorphic functionsFOS: MathematicsHausdorff measure0101 mathematicsComplex Variables (math.CV)MathematicsPartial differential equationmatematiikkaMathematics - Complex Variables010102 general mathematicsMetric Geometry (math.MG)Codimensionmetriset avaruudet010101 applied mathematicsMetric space28A78 (Primary) 26A16 30C62 30H05 49Q15 51F99 (Secondary)Analysis
researchProduct