Search results for " 30C62"
showing 4 items of 4 documents
Weak chord-arc curves and double-dome quasisymmetric spheres
2014
Let $\Omega$ be a planar Jordan domain and $\alpha>0$. We consider double-dome-like surfaces $\Sigma(\Omega,t^{\alpha})$ over $\overline{\Omega}$ where the height of the surface over any point $x\in\overline{\Omega}$ equals $\text{dist}(x,\partial\Omega)^{\alpha}$. We identify the necessary and sufficient conditions in terms of $\Omega$ and $\alpha$ so that these surfaces are quasisymmetric to $\mathbb{S}^2$ and we show that $\Sigma(\Omega,t^{\alpha})$ is quasisymmetric to the unit sphere $\mathbb{S}^2$ if and only if it is linearly locally connected and Ahlfors $2$-regular.
Rigidity of quasisymmetric mappings on self-affine carpets
2016
We show that the class of quasisymmetric maps between horizontal self-affine carpets is rigid. Such maps can only exist when the dimensions of the carpets coincide, and in this case, the quasisymmetric maps are quasi-Lipschitz. We also show that horizontal self-affine carpets are minimal for the conformal Assouad dimension.
Bi-Sobolev extensions
2022
We give a full characterization of circle homeomorphisms which admit a homeomorphic extension to the unit disk with finite bi-Sobolev norm. As a special case, a bi-conformal variant of the famous Beurling-Ahlfors extension theorem is obtained. Furthermore we show that the existing extension techniques such as applying either the harmonic or the Beurling-Ahlfors operator work poorly in the degenerated setting. This also gives an affirmative answer to a question of Karafyllia and Ntalampekos.
Removable sets for intrinsic metric and for holomorphic functions
2019
We study the subsets of metric spaces that are negligible for the infimal length of connecting curves; such sets are called metrically removable. In particular, we show that every totally disconnected set with finite Hausdorff measure of codimension 1 is metrically removable, which answers a question raised by Hakobyan and Herron. The metrically removable sets are shown to be related to other classes of "thin" sets that appeared in the literature. They are also related to the removability problems for classes of holomorphic functions with restrictions on the derivative.